
D-A124 765 VALIDATION IN ADA PROGRAMMING SUPPORT ENVIRONMENTS(U) I/i
VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG
COMPUTER S. D KAFURA ET AL. DEC 92 CSIE-82-12

UNCLASSIFIED Neeei4-8i-K-ei43 F/G 9/2 N

smhhhhhhhhhi
EhhhohhhhhhhhE
EhhhhN[)hhEhhhhhhh-h



M47

31.25 01. 11.

.. "AM KMEAU OF STmN.16-

AA

1.1 qjq

K6



!W -. -

m. 1 u.... r p ** ..

-Y 'W'W Y W71

DTICSELECTE
FEB 22 1983

E

Virginia Polytechnic Institute
and State University

SI' Computer Science
Industrial Engineering and Operations Research

BLACKSBURG, VIRGINIA 24061

IM Thb kem13=0 4 swf 83 02 0.22 2027



T-a
LCSIE-82-12 December 1982

I
I

VALIDATION IN ADA PROGRAMMING SUPPORT
ENV I RONMENTS

Dennis Kafura, J.A.N. Lee, Timothy LindquistiVirginia Tech, Blacksburg, VA
and

Thomas Probert
MITRE Corp., McLean, VA

I

TECHNICAL REPORT

Prepared for
Engineering Psychology Group, Office of Naval Research

ONR Contract Number N00014-81-K-0143
Work Unit Number NR SRO-101 OTICS ELECTE

FEB 22 IF

Approved for Public Release; Distribution Unlimited

Reproduction in whole or in part is permitted
for any purpose of the United States Government

A



Unclassif ied
SCQPTY CLAS&IFICATIOM OF IT%1% PASS (3,.. Date Uatswo ________________

SKREPORT DOCUMENTATION4 PAGE m M C B
111311 mum OVT ACCESO aO . RECIPIETrS CATALOG NMONS

CSIE-82-12

4. TITLE (And Subdued) 5. TYPE OF REPORT A PERIOD COVERED

VALIDATION IN ADA PROGRAM~MING SUPPORTTehia

ENVIRONMENTS S EFRIG00 EOTNME

7. AUTNORe.)-8COTATOGRN UBES

Dennis Kafura, J. A. N. Lee, Timothy Lindquist
and Thomas Probert

9. PERFORMING ORGANIZATION NAME AND ADDREU 10 P ENTj~ 1 .ASKC
Computer Science615N2R009
Virginia Polytechnic Institute & State University 611542i R RO09;
Blacksburg, VA 24061
I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research, Code 442 December 1982
N800 North Quincy Street 12. NUMBER OF PAGES

Arlington, V 22217 67
14. MOt4ITORING AGENCY NAME A A55DRESSD dilluara ibern Controlling 0MS co) IS. SECURITY CLASS. (of U.S. MPeet

Unclassified
I"a. DELSIICATION/DOWNIGRADING

16. OISTRINUTION STATEMENT (of thi. Report)

Approved for public release; distribution unlimited

4 17. DISTRIBUTION STATEMENT (of U.. abstrac untered In Slek Of. i ffernt ko Rope)

Ill. SUPPLEMENTARY NOTES

*~ [is. Key WORDS (Cern~t. an, fewer"e. it.......... old Identit? by block akber)

Ada, Ada Programming Support Environments, Programming Environment, Valida-

tion, Standards, Interfaces

r U~2. AUTRACT (Cmau.v an reverse side It noesearr and RdM*. IVr bleeh.nI
To this date validation has been applied in only two areas, in the valida-

tion of programs and the validation of compilers, and then not to any degree
which can truly be classified as more than "empirical". This study was
established to investigate the steps which would be needed to extend those
previous experiences into the realm of programming environments and in parti-
cular the environments being proposed for use in the Ada program. A model of
such environments already exists but is found to be lacking in essential de-
tail necessary for an implementation to prescribe a model by which validation

*A 7", 1 tIoN OF I NOV 655 IS 0OLETE
9 o n S/N 0 102 LP-014.6601 SCY I.AgIaiORPfIleE-daae

.................................-.- V 14CT. OF................N I

r;~~~~~~r~~~~-~~~~?.~~ ek-.- .' ... * .* . .* . . . . *** -. . . . . .



Unclassified
CTV MCATI@ OFTHS PASS E1b 8ra a Si,

20. ABSTRACT (continued)

can be specified. This report does not itself provide any details of
specific validation procedutes ormec4&nixms, but rather investigates the
processes for Ada ProgrsnninS lrt 'tnvfroment (APSE) implementation in
terms of the Ada Programming Language, and uses those specifications to
suggest a mechanism for validation suite development.

Further in order to accomplish these goals it is suggested that-the con-
ceptual model of the "STONEMAN" document be extended to express the wider
computing environments in which the APSE would reside. This extended model
would also provide a fundamental basis for the design of Ada systems which
responds to the need to provide networking, distributed processing and
security enclaves.

0Aee suion 'For

XTIS R&
DTIC TAB
Uaneunced 0
Justificat in

DI tribut tcn/

Availability Codes

Ava iland/or
1st SPecial

S/N O102- LP.@014- 6@ica01f

,SCURITY ftAMpIAIW Of TMN PAGSA mmZr



DEPARTMENT OF COMPUTER SCIENCE
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

BLACKSBURG VA 24061

VALIDATION IN ADA* PROGRAMMING SUPPORT ENVIRONMENTS**
by

Dennis Kafura, J.A.N. Lee, Timothy Lindquist
Virginia Tech, Blacksburg VA

and
Thomas Probert

MITRE Corp., McLean VA

WORKING PAPER
[Printed 83/01/07]

Abstract

*To this date validation has been applied in only two areas' in
the validation of programs and the validation of compilers, and
then not to any degree which can truly be classified as more than

)" mpirical'". This study was established to investigate the steps
which would be needed to extend those previous experiences into
the realm of programming environments and in particular the
environments being proposed for use in the Ada program. A model
of such environments already exists but is found to be lacking in
essential detail necessary for an implementation to prescribe a
model by which validation can be specified. This report does not
itself provide any details of specific validation procedures or
mechanisms, but rather investigates the pfocesses for Ada
Programming Support Environment (APSE) implementation in terms of
the Ada Programming Language, and uses those specifications to
suggest a mechanism for validation suite development.
Further in order to accomplish these gpals it is suggested that
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INTRODUCTION

A fundamental objective of the Department of Defense (DoD)

initiative to develop Ada is to increase the portability and

maintainability of embedded software [I]. The Ada language will

be the common high order language for use in future DoD embedded

systems, and a Ada Validation Organization (AVO) has been

established to ensure that Ada compilers implement the same

common language. A major objective of the Ada Joint Program

Office (AJPO) is to ensure that Ada remains as independent of

computing systems and applications as possible, and has

undertaken a standardization process to accomplish this

objective. The Ada language is a Military Standard (MIL STD

j 1815) and has been proposed as both an American National (ANSI)

and International (ISO) Standard. Requirements for a common

(standardized) Ada Programming Support Environment (APSE) have

been defined but the details have not yet been settled; however

there is a growing realization that some form of the APSE or its

kernel computing system interface (KAPSE) may eventually be

standardized and conforming products be subjected to validation.

Although validation has usually been an afterthought in language

design and implementation, this is not the case for Ada. At

least in the case of the programming language the development of

the validation suite of test programs has been accomplished hand-

6 in-hgnd with the language standardization process and the ongoing

* This introduction is based on: Probert, T.H., Ada Validation
Organization: Policies and Procedures, Rep. No. MTR-82W00103, The
MITRE Corp., McLean VA, 1982 June, 27pp.
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implementation activities. This report surveys the problem of

developing methods and techniques for the validation of APSEs

based on the preliminary design requirements available at this

time. To date, validation activities within the U.S. Federal

Government have been restricted to implementations of programming

languages according to Federal procurement requirements and

independent of the needs of the general industry. In some ways

this activity fulfilled that need and at the same time has had

the side-effect of providing a measure of "quality assurance" to

the non-government consumers. The same effect may hold true for

1Ada.

Initially, the rationale for validation is the support of the

goals of the overall Ada program (which is much larger than just

a programming language) and is given additional impetus by the

K need to provide a mechanism for the protection of the trademark

which has been registered for the name. Thus unless it is

intended to make the conformance requirements so lax that they

can be enforced by "inspection", then a validation mechanism will

be required for each element of the Ada program including not

only language implementations but also support tools which are

inherent to the program.

THE PROGRAMMING ENVIRONMENT MODEL

When considering the validation of a programming environment one

; ~must consider the underlying model which is used to construct

such entities initially. While it is true that the model which

is proposed here is selected on the basis of its adequacy in a

W
I
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I , validation environment, this same model can readily be the basis

of the development of the programming environments.

The model displayed by Buxton [21 indicates a core-plus-ring

structure which logically elucidates, from a functional point of

view, the relationships between KAPSE, MAPSE and APSE systems but

5l does not clearly delineate between functional and communications

requirements. For example, the diagram of Figure 1 infers the

existence of interfaces between elements of the. environment(s)

but lacks the depth to indicate data-flow requirements which may

be superimposed. That is, the model is two dimensional when the

problems to be solved are (at least) three dimensional.

An alternative" model, though not one which was designed

specifically for the design of programming environments is the

Open Systems Interconnection Reference Model (OSI) [31 developed

by the International Organization for Standardization (ISO)

Technical Committee 97, Subcommittee 16. This model is primarily

concerned with the modeling of networks and may contain

facilities which are too detailed for a direct one-to-one mapping

onto a programming environment. However, it is a feature' of the

model to be able to combine "layerss in order to' implement an

actual system.

The working environments of Ada developed (and developing)

systems may well include OSI-like environments when one considers

the complexity that can be created by tasking, multi-processor

and mult!-targetable syStems. Thus the use of this network model

will provide a second basis for fur her considerations of

, extended environments other th, taw-se of "simple! program

.

I
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':' development in a single family of architectures. A salient

Iv feature of Ada program/system development must be thepotblyii I

~of software [4] and a natural development from that requirement
i will be the development of such software in a network environment

• . where both the development and target systems are accessible to
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It has already been hinted 110,111 that there may exist some

variations in KAPSE configurations due to the differences in

4hardware architectures which underlie them; the unfortunate side

effect of such developments should not be that those same KAPSEs

%! could not exist in a common (Open Systems) network. A start

towards this goal would be the use of a common (standardized)

development model.

A third advantage of the OSI Reference Model is the world-wide

acceptance of this model for Open Systems Interconnection by

network developers. The American National Standards Committee X3

-Information Processing -- has already accepted this model as

the basis for all future standards development work and requires

that all proposals for both development projects and draft

standards clearly identify how the work fits into this model.

USeveral mainframe manufacturers have announced their intention to
build systems which conform to this model and some significantly-

sized users have expressed the desire to purchase systems which

utilize this architecture.

" .The OSI Reference Model

*In the concept of OSI, a system is a set of one or more

computers, associated software, peripherals, terminals, human

operators, physical processes, information transfer means, etc.,

that forms an autonomous whole capable of performing information

processing and/or information transfer. An application-process is

an element within a system which performs the information

* Extracted from DP 7498, ISO.
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processing for a particular application.

The Reference Model contains seven layers:

a) the Application Layer (layer 7); This is the layer in
which "real work" of the system is accomplished; the
remainder of the layers provide the services by which
this layer communicates with other application layers in
a network. The application layer interfaces with theiI outside world.

b) the Presentation Layer (layer 6); this layer provides for
the representation of information that application-
entities either communicate or refer to in their dialog.

", The Presentation Layer is concerned only with the
syntactic view of the presentation image and transferred

Application Layer.

c) the Session Layer (layer 5); the management of (for
.I' :.. example) a terminal session is the responsibility of the

session layer. Such responsibilities include the
necessary resource management for the support of the
applIcation.

d) the Transport Layer (layer 4); the transfer of data
between session layers is the task of this layer. For
example, if the application needed access to a data-base,
then it would be the responsibility of the transport
layer to negotiate the data exchange between the session
layers which support the specific application and the
data base system (which is itself treated as an
application-entity in the model).

U e) the Network Layer (layer 3); the connection between two
nodes of the overall network must be managed by the third
layer by providing the services of relaying data between
end systems with network connections.

f) the Data-Link Layer (layer 2); the essential element of
any network is the data link between them in order to
exchange data-link-service-units which implement the
network activities.

g) the Physical Layer (layer 1); the physical layer provides
mechanical, electrical, functional and procedural means
to activate, maintain and deactivate physical connections
between systems through the use of the physical media on

• which it is built.

These layers are illustrated in Figure 2. The highest layer is

the Application Layer and it consists of the application-entities
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that cooperate in the OSI environment. The lower layers provide

Peer-to-Peer Protocols
4-------4---------------4---------------

,.pplcation - - >p 7 < ------- >
4.--------+---------------4----------------

Presentation > 6 < ------- >1
----------------------- 4----------------4

Session --- 5 -------- i---< ->1

Transport 1 < ------- I
------------------ ------------------------------

Network ---------- >1 3 < ------- >I
------------------------ 4---------------

Data Link -------- >1 2 < ------- >

Physical --------- >1 1 *<----> I

4.--------.---------4----------------4----------------4----------------
Physical Media I

4.------------------------------------------------------------------4

Figure 2. Seven Layer Reference Model

the services through which the application-entities cooperate.

An essential element of the OSI model is the clear definition of

protocols and interfaces between layers of the model. The

primary communication processes in the model are those that

communicate with processes which exist in the same level layer as

they themselves reside. This is peer-to-peer communication.

That is, appplication-layer processes communicate with other

-> application-layer processes in layer 7, networks communicate (in

layer 4) with other networks and so forth. This manner of

.t ~communication is a logical transmission which requires the use of

peer-to-peer protocols to implement the data exchange. The

logical communication process is physically accomplished through
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the (vertically stacked) interfaces between consecutive layers,

and each layer provides services to the layer above it while

receiving service from its lower layer.

The Application of the OSI Reference Model to an APSE

The original intent of the OSI Reference Model was not to5actually represent an implementation strategy but instead to

model those elements of a communications environment which need

attention in the domain of networks and distributed systems.

However such a model is clearly applicable to communications

within both so-called "federated" systems and stand-alone

environments. Moreover the facilities provided in the layers of

the model have affinities with the tasks to be undertaken by

other administrative aspects of networking and distributed

processors. Thus rather than proposing to add other layers of

complexity to the OSI Reference Model it is proposed here that

additional features be added to the layers in order to represent

the non-communication facilities of these environments.

The OSI Reference Model can be implemented in a variety of

manners, one of which would be to combine several layers into

one. Thus the model can be applied to the design and

implementation of programming support systems. Further it is not

required that a layer be composed of only a single process (or

processor); in fact it is clear that in many situations a layer

will have to be composed of a collection of facilities which

provide the support to the layer above, or receive data from

lower layers. In an Ada Programming Support Environment, the

majority of tools will exist as application-layer processes and

. . . . . .... 9 . .- . . -.-.-- - . , S,. .
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* the facilities of the KAPSE will be contained in the session

layer. The presentation layer will contain the mechanisms which

provide the communication between the application (an Ada program

or a tool) and the KAPSE facilities. This can be viewed as an

argument to' the parameter mapping function and is specified

* through the specification parts of the packages which constitute

the KAPSE facilities. This mapping of the APSE models onto the

Peer-to-Peer Protocols
------------------------ +----------------

Application ---- < > <---APSE Tools
4.---------..----------4----------------

Presentation ----- >- >: 1<---Data transfer
4-------4----------------4------------ -- I

Session -> - - > <---KAPSE Facilities
------------------------ 4----------------

Transport > < ------- >1 )
I.I

Network ---- )------

11 I )<--Hardware Level
Data Link -------- >1 ------- >1 .1), I I )

Physical --------- >1 < ------- > )
-------- . --------------------------------------------

1Physical Media
4.-------------------------------------------------------------------4

Figure 3. APSE Reference Model

OSI model is shown in Figure 3.

In a "stand-alone" environment, layers 1-4 may be decomposed

into a single module which represents the hardware system on

. which the Ada system is implemented. One other visualization

would provide a subdivision of each layer either by the vertical

stacking of sublayers or the division of each layer into a set of
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elements each of which interfaces with the lower layer. In this

latter case, the tools which constitute the application layer are

built individually on the presentation layer and have no other

means of communication with each other than through the KAPSE

(session) layer. On the other hand, it is more than likely that

such systems will be required to communicate in order to provide

cross-compilation, on-line debugging and similar inter-system

activities. Thus, it is imperative that a networking model, such

as the OSI Reference Model, be an integral part of the APSE

implementation system. This model also -clearly indicates where

validation systems need to be installed.

VALIDATION METHODS AND PROBLEMS

The problems of validating a Programming Support Environment are

Sakin to those of validating an operating system, a task which

itself has not been attempted previously. Not the least of the

-. problems to be resolved is the validation of the collection of.

tools and facilities which make up the environment but also the

communications between those elements when they are integrated

into the support system. Let us consider these elements

separately.

Validation Elements

The OSI Reference Model presented in the previous section

contains two basic elements. The first element is a set of

objects each of which performs a specific, well-defined function.

6The internal mechanism which implements this function is

I.
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concealed from view and the object may be readily interchanged

with any other object, differently implemented, which performs

the same function.

In the ADA context, we may conveniently identify two types of

objects: facilities, either KAPSE facilities or other predefined

library facilities (e.g., INPUT_OUTPUT), and tools. This

distinction between facilities and tools is useful because they

are designed with different goals in mind. Facilities are

i- ~intended to provide generic capabilities out of which a large

number of tools could be constructed. Conversely, the facilities

are neither concerned with any specific tool nor with the needs

or characteristics of any eventual end-user, human or otherwise.

By contrast, a tool is intended to provide a specific type of

service to an end-user. The nature of this service is derived

from the requirements of that user and from the operation of

other tools with which the service may interact. The distinction

between facilities and tools is also useful from a validation

point of view-because, as will be seen later, the techniques used

to validate facilities are different from those used to validate

tools.

The second basic element in the OSI model is the mechanism by

which objects interact. An interface is the means of immediate

interaction between a tool and a facility or between two

different facilities. Recall, also, that the model requires that

two objects related via an interface be located on strictly

adjacent levels. As an example, an interface may exist between
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an editor tool and a KAPSE facility. Also an interface may exist

between a library facility and a KAPSE facility.

An interaction between two objects on the same level is

a lieved via a protocol. A protocol is the means by which an

object assigns meaning to tokens which it sends to, or receives

from, another object. An interaction between two tools, then,

involves two protocols - one for each tool. Proper interaction

between these two tools is only achieved, of course, when both

tools use the same protocol. For example, an editor tool and a

compiler tool typically interact through files which are passed

between them. The editor creates a source-text file for

subsequent compilation. The compiler produces an annotated

Lsource-listing, *with possible diagnostic information, which may

be viewed by a user through the editor. The two protocols

involved in this example are manifested in the assumptions which

each tool makes about the structure of these files. The

following example illustrates how these two tools may fail to

communicate properly because they are using different protocols.

Suppose the editor tool assumes that the first line of each file

which it creates or edits contains the settings for various

editor options (line length, search modes, user-defined keys,

terminal characteristics, etc.). On the other hand, suppose that

the compiler assumes that all lines in a file contain compileable

source-text. In this situation, an otherwise valid source-

program file produced by the editor would, when presented to the

compiler, result in error messages because the first line in the

file would not be valid source-text. Furthermore, these error

I
I

I e |! 'r u - 1 . ,:,f;C- ....S.. -.. . - - "S . ..-= - -".t *.- -:"'¢. : " ;
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"- messages could not be related to the user view of the source text

because the first line as seen by the compiler is not visible toI the user. In addition, the source-listing file created by the

compiler might not even be readable by the editor because the

V! editor expects that the first line of text contains the option

Psettings which will not be the case for files produced by the

compiler. More subtle, but equally important, forms of protocols

will be described later.

The distinction made between objects and the communication

paths between objects provides natural points at which the

validation effort may be directed. A complete validation may be

structured into two phases. The first phase is the validation of

the objects by themselves. Attention in this phase is limited to

a validation of the functionality of each object, where the

object iS treated as an isolated entity. The second phase

validates the interfaces and protocols through which the objects

interact with each other. In this second phase, attention is

directed away from the functionality of the object being

rvalidated and becomes focussed on the assumptions which the

object makes in its interactions with other objects.

This division of the validation process into two disjoint

°'" .phases appears to be both natural and technically feasible.

There are, however, certain questions which must be further

studied. For example: Is this division equally applicable to

both APSE tools and KAPSE facilities? Is it always useful to

separate the validation into these two phases? Is there a
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difference in the order in which the two phases are performed?

These questions are meant to suggest the further inquiry that

must be made into the question of validating tools and

facilities.

Validation of Facilities and Tools

As indicated above, the first phase of the validation effort

*establishes to what degree an object, considered as an isolated

entity, provides the function(s) expected of that object. This

first phase of the valid.tion process requires both a proper

specification of the object's function(s) and a conformance

mechanism. The specification, of course, must be a clear,

complete, precise and unambiguous statement of the object's

desired function against which the actual behavior of the object

U may be evaluated. The conformance mechanism is a, hopefully

automated, process through which it is ascertained whether the

object, in fact, displays all of the functions described in the

object's specification. The conformance mechanism is typically a

functional testing tool which is driven by a suite of test cases.

2 These test cases, in turn, are derived from an analysis of the

specification. There is a large body of literature dealing with

'the techniques of functional testing [5) and test-case selection

[6]. It is critical, however, to realize that these techniques

cannot be applied rigorously and effectively in the absence of a

properly stated specification.

It is more difficult to write a proper specification for Ada

tools than it is for facilities. The difference lies in the fact
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that facilities are always expressed as packages and typically

contain only a few functions with narrowly defined semantics.

I For example, common facilities might be "read a single character

from a stream" or "create a new process". The use of packages

themselves gives a concrete form to the specification of all

syntax information for the facility. In a later section, the

methods for specifying the semantics of KAPSE facilities will be

considered. A tool, however, will typically exist as an Ada

r; program (not a package) which is invoked through the command

language mechanism. The tool will typically provide a broad

range of individual, but interrelated, functions which may

involve extensive user-interaction (e.g. an editor or debugger

tool) or may have input with complex syntax (e.g. a compiler tool

or text-formatting tool). Unlike facilities whose syntax of use

is captured by the package specification, the syntax of tool use

i ~-is not embodied in any Ada language construct.

The conformance mechanism is also more difficult to construct

for tools than for facilities. Given a validation suite for a

4.;l facility, a specialized conformance-tool can be built which

exercises the facility as dictated by the validation suite and

which compares the behavior required by the validation suite with

~-the result produced by the facility. Discrepancies between the

desired and actual function are detected and reported. The

conformance mechanism for a tool is more complicated when the

tool involves significant user-interaction. As an example,

consider a full-screen editor tool which uses the cursor position

to determine a reference location for editing commands.
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Presumably the editor tool uses standard KAPSE facilities for

terminal I/O. It may also be the case that the terminal

facilities are distinct from the facilities for file I/O or

interprocess communication. A part of the validation suite for

the editor tool would involve perhaps many test cases which

exercise the various editing-functions at different cursor-

positions (e.g., a deletion/insertion at the beginning/end of the

LAI screen/line). One conformance-mechanism is, of course, to use a

CX human operator to perform these test cases. This approach is

both expensive and error-prone. To create an automated process

Nwhich could perform these tests would require not only a

conformance tool to drive the delivery of the test cases and

. check the results of each test but, more significantly, would

require some means of intercepting or simulating the terminal

I/O. This may either be done by a separate computer system which

is attached to the system under test through a terminal port or

by the creation of a new terminal I/O-facility, which would allow

the output produced by the editor and destined for the terminal

to be diverted to the conformance tool itself. Similarly, the

input expected by the editor tools would be taken from the output

stream of the conformance tool and presented to the editor tool

3 as if it were a terminal stream. Whether this new facility

could be easily constructed from the existing KAPSE facilities

depends entirely on the way in which those facilities have been

, implemented and, possibly, on the underlying operating system.

* .Validation of Interfaces and Protocols
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The second basic element, in the Ada environment model, is the

means by which objects interact through interfaces, providing

communication between objects at adjacent levels, or protocols,

providing communication between objects at the same level. The

validation of the interfaces or protocols relating a given pair

of objects assumes that a validation suite is available which

exercises the full range of possible communications. In the

following paragraphs the validation requirements for interfaces

and protocols are discussed in more detail and their relationship

I 'to the validation suite is described.

The critical interface to be validated in the Ada environment

is the interface between a tool and one or more facilities.

While there may be additional interfaces present within the tool

U itself, these interfaces are concealed from the view of the tool

validator, which is the validation viewpoint taken here. The

4relevant question then is: "For a given tool how can it be

determined whether that tool uses only standard KAPSE facilities

and uses them only in a manner consistent with the definition of

these facilities?". Dealing with this question is important for

twc reasons. First, focussing the validation on the tool-

facility interface assures that the validation suite is

sufficiently robust to exercise the full range of their

interaction. Without this focus it would not be difficult to

construct an otherwise impressive validation suite, which did not

exercise some exceptional circumstances of the tool-facility

interface (e.g. a memory fault). Second, even a thoroughly

tested tool may have been developed and tested on a non-standard
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KAPSE or on a system which incorrectly simulated the KAPSE

facilities. In this case the interface validation would reveal

the level of conformance with standard KAPSE facilities.

*The obvious process for validating the tool-facility interface

is by exercising the tool portability. That is, the tool and its

validation suite are removed from the development environment and

transported to a validated, standard KAPSE. The tool validation-

suite is then applied *to the tool. If the tool operates

successfully in this standard environment then the interface is

considered to be validated.

Two implications follow from this validation approach. First,

it must be possible to know how extensively and in what ways the.

validation suite exercised the interface. This knowledge can

only be obtained by instrumenting the KAPSE facilities

themselves. This seems to imply that a specialized "validation

KAPSE" should be developed which contains the required

instrumentation. This answer, however, only reveals a further

question: "What interpretation can be given to the measurements

obtained by the instrumentation?" or* conversely "What events

should the instrumentation be recording?" The answer to this
question involves the way in which the tool interface

specifications are themselves stated. That is, the specification

of the tool must contain an explicit and complete description of

exactly how the tool will use the KAPSE facilities. This

specification should include at least the following items:

(1) names of all KAPSE facilities used

21 -.-. .*** * *. - ~ '
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- (2) name of each procedure, type and data item used
in each facility

(3) ranges of parameter values for all IN, IN-OUT,- IIand OUT parameters for each procedure
(4) important sequences of facility usage
(5) error exceptions anticipated

This list is only suggestive of the further thought that must be

given to this issue. Only an agreed-upon specification-form can

lead to the development of an instrumented validation-KAPSE,

which, in turn, is necessary to perform the validation act

- , i tselif.

x.,

The second implication which follows from the approach of

interface validation by portability concerns the way in which the

validation suite is applied to the tool being validated.

Presumably, an automated driver was created in the development

environment which performed this task. The role of. this

automated driver (conformance mechanism) was addressed above.

>:. ~? However, to efficiently perform the validation, this driver

itself must be transported to the validation KAPSE. Thus, not

only must tools be portable, but their test drivers must be

L-2: portable as well. It may well be made a concrete validation

requirement that such a portable, automated driver must be

supplied along with the tool to be validated and the validation

suite. One difficult problem which arises, and perhaps reflects
on how the KAPSE itself should be defined, is that, as noted

above, the test driver may need to use modified KAPSE facilities

to simulate, or intercept, the tool's terminal I/O without

modifying the tool itself. It is also unrealistic to achieve

this goal by modifying the validation KAPSE. Perhaps, the

F. *; ',' n 2 " ' '/ .; .",'. i , - -"","" ". '' "-" % , '".'-''-". -v ; " -'"
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P N original KAPSE design should provide a mechanism which allows a

driver to capture the terminal I/O stream generated by a tool.

In any event, some means must be found for resolving this

". problem.
-. . 4

The validation of protocols between Ada tools is also an area

." where additional work will be required. Many basic tool

-" .: complexes possess protocols in one form or another. Typical tool

pairs which interact .through protocols are: compiler- linker,

. linker-debugger, librarian-configuration manager, text formatter-

--device manager, etc. The ways in which tools can be related

through protocols are varied. Some of these ways are:

(1) intermediate files
(2) message stream communication
(3) timing synchronization
(4) resource contention

While there may be other ways in which the tool protocol is

manifested, the important point is that the tool validation must

take into consideration the interaction of the tool being

validated with other tools. This wider viewpoint, which

encompasses the validation of the protocol, is necessary because

the tool is not an isolated entity which functions in a vacuum.

Rather tools cooperating through protocols form an integrated

entity whose combined function must also fall within the purview

of the validation process.

As with interfaces, the validation of protocols between Ada

tools is based on an accurate specification of the protocol

itself. Two classes of protocols may be distinguished in terms

.- '' ~.z~ A~~ ,. . . . . . . . .
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j of their difficulty of specification. Protocols in the first

class are characterized by the use of a file to pass a complete

body of information from one tool to the next (e.g., the file

passed from the editor to the compiler). The communication

established by this protocol is uni-directional and the tool

Iwhich produces the file (the editor) completes before the tool

which consumes the file (the compiler) is initiated. The

specification of these protocols is no more difficult than

detailing a file format and indicating the meaning of each part

of the format. This can easily be done using some variation of a

-. data structure diagram 171. The validation of this protocol is

also straightforward.

J
The second class of protocols are those in which there is a

bi-directional communication between two simultaneously active

tools (e.g., a debugger tool and an application tool). This

~* : protocol may achieve either the exchange of information bearing
messages or the exchange of synchronization signals. This second

.*" class of protocols is more difficult to specify and to validate.

There are at least four possible methods for the specification of

these types of protocols. First, there are informal descriptions

of the protocol with the usual ambiguity and imprecision which

that entails. Second, formal representations, such as finite

state machines or petri nets, can be used. In these.

representations each tool is considered to be in one of several

j states. The transitions between states of a tool are triggered

by the transmission or the receipt of a message or signal. Using

these methods it is possible to analytically determine important
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: properties of the protocol (e.g. deadlock). This method of

specification seems to provide a more suitable basis from which

the validation suite can be derived. A third possible method for

... specifying the protocol is by appeal to a predefined inter-tool

,.-.= protocol. For example, a standard debugger-application tool

P protocol may be defined in advance of the construction of either
tool. This predefined protocol may be established as a package

whose procedures implement the protocol. The validation amounts

to certifying the correct use of these procedures in each tool.

Fourth, a protocol "specification" language may be used which

contains high level constructs for defining synchronization

relationships. This language may be procedural (using, for

example, monitors or a CSP-style type of primitive operation) or

non-procedural (using techniques like path expressions to

describe legitimate sequences of concurrent- procedure

• invocations).

Regardless of the specification technique employed, the

%conformance mechanism must ultimately apply the validation suite

derived from the specification to the tool(s) being validated.

Given a tool, A, whose protocol with another tool, B, is to be

*' ~validated, the conformance mechanism would replace tool B by a

previously validated equivalent of tool B or by a stub tool

designed to respond appropriately to the circumstances created by

A *the validation suite. Tool A is then exercised as determined by

the validation suite and its behavior is compared to that defined

'as correct by the validation suite.

•....," , ""
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Since there is a clear distinction between protocols and

interfaces, the validation of protocols can be done in the

development environment itself. That is, the protocols do 'not

depend on their implementation being achieved by the use of

standard KAPSE functions. If, in fact, the protocols are

implemented using non-standard facilities that fact will be

revealed when the interface validation is attempted. Recall that

the interface validation requires that the tool being validated

must be moved outside of the development environment. This

separation of validation between interface validation and

protocol validation is one of the important benefits which is

derived from the use of the reference model presented earlier.

Specification of KAPSE Facilities

It was noted above that the validation process is based on a

precise and complete specification of the object being validated.

In this section possible methods for specifying KAPSE facilites

will be considered. One promising specification method, using an

abstract-machine, will be illustrated by example.

The specification for each KAPSE facility must include the

41 4 following details:

(1) syntax
(2) semantics
(3) limits

}(4) hidden protocols

Accurate specifications of this information is necessary in order

to design a robust validation suite for the facility. The

".,

,' cb * ~* *~*~*
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meaning and role of each of these items in the validation process

* is explained below.
ii
N The syntax information is easy to specify since each KAPSE

facility-is defined as an Ada package. The package specification

itself, containing operation names, type names, etc., serves to

define the syntax of the KAPSE facility.

SThe semantic information is both the most difficult and the

most important part of the specification because it defines the

! Zintended "meaning" or "function" of the KAPSE facility. The

-semantic information can be provided in four different ways.

First, a natural-language specification of the semantics merely

describes in English prose the intended operation of the

facility. While natural-language specifications are common (see

for example the ALS KAPSE package shown in the example in the

. next section), it is not possible to verify if the natural-

language specification is complete, consistent or unambiguous.

ISecond, there are several formal methods for specifying semantic

properties including axiomatic specifications, denotation

* semantics, or validation assertions. These methods employ a

mathematical formalism to define the semantic information, which

are precise and subject to mathematical analysis but they are

also expensive to construct and difficult for typical programmers

and system designers to understand. However, since the KAPSE

.A facilities will be defined only once and implemented numerous

times the precision of a formal specification may be worth its

dcost. The value of a formal specification can also be enhanced

, 

.. .. • . . o .. .. .. .. .. . -. .-. .W** *--
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by including an informal, natural-language commentary which

increases the understandability of the formal specifications. It

should be remembered, however, that the specification is

ultimately the formal description and not the additional

commentary since the validation suite would be constructed in

agreement with the formal specifications. A third method for

specifying the KAPSE semantics is through an abstract-machine.

This abstract-machine contains as primitive objects the elements

appearing in the KAPSE environment (e.g., streams, flags,

histories, processes, etc.). The specification of a KAPSE

facility is given by writing a "program" for this abstract-

machine which, if executed, would perform the function intended

for the KAPSE facility. That is, the semantics of the program

are the semantics of the KAPSE facility. An example of this

approach is given in the next section. By comparison with the

other methods, the abstract-machine approach is more formal and

concise than the natural-language specification, easier to

comprehend than the formal methods, but is less precise than the

formal methods because the semantics of the language used to

write the "program" must now be defined. This later problem can

be minimized by using Ada itself as the language in which to

write the program for the abstract-machine. The fourth, and

final, method of semantic specification is by example. In this

method the validation suite is constructed first and,. by

I definition, anything which acts in accordance with that

validation suite implements the intended semantics. In this

method the semantic information is described implicitly.
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The importance of the KAPSE semantics to the validation effort

implies that several of the four specification methods described

above may be used in conjunction to specify the KAPSE semantics.

By using several specification methods concurrently it is

:" possible to satisfy the conflicting demands of precision and

understandability of the specification. For example, a complete

specification might contain either an abstract-machine program or

a formal mathematical description supplemented by a natural-

language commentary and illustrated by a validation suite.

Disagreements among these three descriptions can be avoided by

arranging each part of the commentary as an expansion of a

single, specific part of the formal description rather than

.4,.. creating the natural-language description separate from and

differently organized than the formal specification. Similarly,

each case in the validation suite should be tied to a specific

part of the formal specification and commentary. In this way,

the different levels of description are reinforcing and provide

both high precision and ease of understanding.

The third part of the KAPSE specification must include details

of any limits which are applicable to the facility being

specified. Such limit information describes the'sizes of objects

(e.g. identifier strings, maximum file size, maximum number of

entries, and maximum number of processes) and the number of times

, that operations may be repeated. The importance of this limit

information to the validation process is illustrated by the

following example. Suppose that an APSE tool is designed to

create 10 subprocesses and to produce a file that is 10 megabytes

N
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in length. Without careful attention being paid to the limit

specifications it is easily possible to implement this tool on a

KAPSE supported by a large machine which uses only the functions

provided by the KAPSE on that machine. However, when that tool

is transported to a KAPSE supported by a much smaller machine,

the tool may be unable to operate because of the more limited

environnment of the second system. It is important to see in

this example that the impediment to portability is not a function

0. of the KAPSE facilities, but of the limits which circumscribe the

extent or repetition of that facility. Since the KAPSE may be
implemented on machines with widely-varying machine resources, it

would not be unusual to consider validating a tool relative to a

defined set of limits. While this does not make a tool any more

or less portable, it does bring into clear view the degree of

portability of that tool. Such a conscious statement of the

,±. ~ limit specifications may also serve to control the tool design if

a highly-portable tool is the design goal.

The fourth, and last, part the KAPSE specification is a

description of the "hidden protocols". In a previous section the

issue of validating the protocols between APSE tools was
I"

discussed. On the surface there does not appear to be a similar

validation requirement for KAPSE facilities because each KAPSE

facility appears an an independent function. However, beneath

the level of the KAPSE interface many of the KAPSE facilities

are, in fact, related through data objects in the implementation

of the facilities. These underlying connections, or protocols,

are "hidden" from the view of the validator because they are
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implementation dependent and cannot be directly observed - they

can only be validated indirectly by observing the joint behavior

of those KAPSE facilities interrelated by a given "hidden

protocol".

For example, the procedure ANNOTATE in the ALS KAPSE contains

the following specification:

"This procedure adds annotation to the derivation record.
The text parameter contains the text to be added. ...
When a file is closed and receives derivation information,
the annotation is placed in the file's deriv text
attribute."

In this case the annotation which is supplied as a parameter to

the ANNOTATE procedure is retained in some implementation object

until the file being annotated is closed. At that time the text

is retrieved from the implementation object and copied to the

file's "derivtext attribute". Notice that the existence of this

implementation object is only implied by the specification. This

implementation object embodies a "hidden protocol" since it

allows a lateral flow of information between objects at the same

level -- in this case between KAPSE facilities.

Since the validation process must assess the behavior of

facilities related by such "hidden protocols", it is important

that the KAPSE specifications make visible the relationships

between KAPSE facilities. This visibility can be achieved by a

simple mechanism. If there are N KAPSE facilities, an [NxN1

table can be constructed where each entry in the table describes

the protocol connecting a pair of KAPSE facilities. For example,

- AA a f -. .. * -.' **.
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. '.* using the ALS procedure described above, the corresponding entry

in the hidden protocol table, named HPT, might be:

>1 HPT[ANNOTATE,CLOSE)

"annotation information supplied to the ANNOTATE
procedure is added by CLOSE to the derivtext
attribute."

The validation suite would then contain a set of test cases which

evaluates the correctness of the interactions identified by the

KAPSE hidden-protocol table.

Example of a KAPSE Specification

The following example is taken from the preliminary design

4 specification of the ALS KAPSE. The comments which follow are

intended to illustrate a method of specification, using a

program for an abstract-machine, which can be more precise and

more comprehensible than a natural-language specification. This

example, is not meant to be critical of the design or

specification developed by SofTech [81 but reveals, we believe,

common and fundamental problems in KAPSE specifications which all

implementors face. The brief example concerns two procedures

7defined in the FILEDERIV package: the procedure ANNOTATE and the

procedure CITEINPUT. The natural-language specifications for

0these two procedures are as follows:

mANNOTATE:
procedure annotate

( annot text : in stringutil.var stringrec;
result : out io defs.io result_enu;

resultstring : in out stringutil.varstring_rec
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This procedure adds annotation to the derivation record.
The text parameter contains the text to be added. A null
value for the text parameter is a special case, causing all
current annotation to be cleared. When a file is closed and
receives derivation information, the annotation is placed in
the file's deryv text attribute. The result parameter

,14 indicates the success or failure of the request.

CITEINPUT:

procedure CITEINPUT

( stream : in io defs.stream id prv;
citeflag : in boolean;
result : out io defs.io resultsenu;

Zresultstring : in out-string_util.varstringrec

This procedure sets or clears a flag indicating if an input
file is to be cited in derivation histories. The stream
parameter indicates the stream assocated with the input
file. The stream must be associated with an environment
database file opened for ''in'' or ''inout'' access. The
citeflag parameter indicates if the flag is to be set or
cleared. If it is true, the input file will be cited in"subsequent derivations, if it is false the input file will
not be cited. The result parameter indicates the success or'1 ~failure of the request. The flag for any given input file
may be set and reset as often as necessary. the value of
the flag at the time a derivation is being written
determines if the file is cited in that particular
derivation or not. (Derivations are written only when output
files are closed.) To be cited in a derivation means that
the file will be referenced in the output file's
derived from association. Input files that are not cited are
referenced by the output file's other inputs assocation. In
other words, if an input file is "cited" in a derivation the

. derivation information is "hard", i.e., the derivation count
attribute of the input file is incremented when the
derivation is written to the output file. Input files that
are not "cited" in the derivation are still mentioned in a
"soft" manner, i.e., the derivation count of the input file
is not incremented.

Notice that in the above specifications, certain basic objects

are referred to: derivationrecords which may be added to or

cleared, input/output streams which are of different types and



31

ji have derivation and record flags which may each be set or

cleared, and string used for returning result information. Since

these objects are fundamental entities in the universe being

defined by the KAPSE, these objects are explicitly defined in

the program of the abstract-machine. Thus, the following

qabstract program contains the declaration of three objects:

derivationrecord, string, and iostream. The bodies of the two

procedures ANNOTATE and CITEINPUT are also given. Additional

comments on this abstract program specification are given after

the abstract program.

Abstract-Machine Specifications for the ALS package FILE DERIV:

OBJECT derivation record HAS
clear, add : OPERATIONS;
capacity : ATTRIBUTE;3 end derivation-record;

OBJECT string HAS
"-"-, "- OPERATIONS;
length : ATTRIBUTE;

end string;

OBJECT code is ENUMERATED TYPE;

procedure annotate(
annot text: in string;
result : out code;
resultstring: in out string );

begin
if annot.text = null

* i *then clear (derivation record);
aelsif derivation-record'capacity < annottext'length

then begin
result := "failure code";
result string := "insufficient space"
end

* 1 I -.'Fe ' i, 5 N'' ..::,, ' .. '',''. '° ."'''""",;'", > " .' -,".:-f .,- , " .
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else begin
add(annot textderivationrecord);result :=-"normal code";

,;result strinq : = "succe ss .::
end;
endif;, -. end;

*OBJECT io stream HAS
acces-s type, file type ATTRIBUTES;
OBJECT derivation flag HAS
set, clear : OPERATIONS;

,4 ., end derivation flag;
OBJECT recordflag HAS
set, clear : OPERATIONS;
end-record flag;

end iostream;

Y-|

-'"

.0I
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procedure CITEINPUT(
stream : in io stream;

4 4' cite flag : in boolean;
result : out code;
resultstring: in out string);

begin
if stream'file_type /= "environment database"
then begin
result := "failure code";
resultstring := "not environment database file";
end;
elseif stream'accesstype / in or

stream' access_type / inout
~ then begin

". result := "failure code";
result_ string := "incorrect access type";
end.;

. :else begin
result := normal;
result_ string := "success";
if citeflag
then set(stream.derivation flag);
else clear(stream.derivation flag);
end;
endi f;

end CITE_INPUT;

-'. Several points are of interest to note in the above example.

First, in the specification of the ANNOTATE procedure, the fact

that insufficient space is one of the possible outcomes of a call

on this procedure can only be determined in the original

specification by examining the possible values of the enumeration

type which defines the result parameter. However, -in the

abstract-machine approach, this fact is clearly visible. Second,

by comparing the natural-language specification of the CITEINPUT

procedure with the abstract-machine specification it appears that

much of the specification given in the former case is misplaced

because it has little to do with the operation of the CITEINPUT

procedure but it has more to do with the close operation and its

V.., ,.
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effects. Third, the natural-language specification only implies

the nature of the basic objects in the environment whereas the

declaration in the abstract-machine approach identify the

attributes and operations for each such object. For example, to

determine the total characteristics of an iostream, it is

necessary to read several parts of the specification of

CITEINPUT and other procedures while there is a single place in

the abstract program which provides this information.

The abstract-machine approach is certainly far from complete

and there are many unanswered questions regarding its use.

However, it is put forward in this report to indicate a possibly

fruitful avenue of research which would permit the KAPSE

facilities to be specified in a precise and. comprehensible

* manner.

Validations of Run-Time Environments

The purpose of APSE's (and their subsets) is to provide a

standardized, programmer-portable, environment in which Ada

programs can be developed, compiled, debugged and tested. In the

latter situation it will be necessary to construct model run-time

-environments in which to perform these tasks since it is unlikely

that the actual environments will be secure enough to permit on-

line testing.

"Stoneman" [2) suggests (section 2.B.11) that "the KAPSE is a

virtual support environment for Ada programs", but it our

contention that this should be more correctly stated as "the

KAPSE is a virtual support environment for the development of Ada

I
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programs". In the model, and as shown in Figure 4, the KAPSE is

replaced by a run-time environment which contains the support

facilities defined by the Ada Language Reference Manual (LRM) and

the necessary PRAGMAS. It is likely that there will be some

overlap in the facilities provided in the run-time environments

and the KAPSE, but it should not be overlooked that these

environments have disjoint members. Thus, there are two further

~'" validation activities which must be considered:

(1) the validation of run-time environments as a separate
activity from general compiler-validation, and

(2) the validation that the model or test environments not
only conform to the general validation requirements (1)
above, but that they also correctly "mirror" the run-
time environments which they are intended to model..

.4" This latter requirement is necessary since it can easily be

anticipated that actual environments will contain facilities

which, while they themselves are conforming programs, are

Speculiar to and modify the general run-time environments required

by the Ada LRM. On the other hand, this requirement for

" ~'validation is not one which should be imposed on a general

. validation organization, but instead should be part of the
requirements contained in contractual agreements with software

4., vendors.4. '.
At run-time, the reference model contains not the support

environment elements but instead the actual Ada program at the

application levl, the necessary argument-parameter transfer

facilities in the presentation layer, and the run-time support

facilities in the session layer as shown in Figure 4.

..
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Peer-to-Peer Protocols
-----------------------------------. -----------

Application - > 1< ------- >1 --- Ada Program
- ---.-----------.--------------.

Presentation ----- 1<------->1 <---Data transfer
-.--------- *-------------------4eeeeeee.

Session ------------ >1 -- < ------->1 j ---Run-Time FacilitI
----------------- 4--------------

Transport -------- < ------- >1 )
:- ,II *I I )
Network ----- >1 < )------->1

I 1 .1 |)<--HardWare Level
Data Link -------- >1 1< ------ >1 1)S,,II I I )

Physical > < -------> I)
-- ---.-----------------------------.-------------- 4

-i Physical Media
4.---------------------------------------------------------------4

' Figure 4. Run-Time Support Nodel

VALIDATION OF KAPSES AND THEIR FACILITIES

The validation of a programming support environment can

primarily be considered in two stages: the validation of the
4,°

KAPSE and its facilities and subsequently the validation of the

tools which are contained in either a MAPSE or a "full" APSE. On

the basis of the Reference model, the validation can be

considered as the validation of each layer. Within a layer it is

necessary to show that the processes contained therein fulfill

the service requirements of the higher layer, or in the case of

the application layer (7), that the application requirements are

met. Between layers it will be necessary to show that the

interface requirements are met, and from any layer, communication

. . ......... ... .. . . . . . . . . . . . . ' ....



37

with a peer-layer is in conformance with the protocol

requirements of the system. This latter situation will occur

when (for example) a debugging tool exists at the application

level and is monitoring or debugging an application elsewhere.

."

pi Peer-to-Peer Protocols

> Debugging Tool----> I< ------->1 I(---Ada Program
4.----------,eee-------

Data transfer----->I I< ------ >1 <---Data transfer

------- 4------ ------- 4--------------4+

KAPSE ------------ >1 < ------. <---Run-Tlme Faciliti
---------------- eee-*--------------I I < --- -- >1

( II< ------- >1l

Hardware Level--->()( I I I-)---!ardware Level.' II< ---- -- l)

I( -- .----- - .. .

I Physical Media I
4.--------------------------------------------------------------4

Fglure S. The Debugging Nodel

This situation is shown in Figure 5. In this model it is assumed

. that the two systems are separate and that communication takes

place through the physical media; in a cross-compilation and

4- debugging environment this model would require extensive

" facilities to "make sense" of the debugging information which is

exchanged between the two environments. Similar models, which

all exhibit the same layered characteristics, can be constructed

for cross-compilation, data-base access, and multiprocessor

systems. Thus it is clearly apparent that a generalized
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validation-schema can be developed by the use of this reference

model.

KAPSES AS ADA PACKAGES

The STONEMAN requirements [2] specify that:

"5.E.1 The KAPSE shall implement interface definitions which
,. shall be available to APSE tools. Such interface

definitions shall be given in the form of package
-. specifications in the Ada Language.

5.E.2 Interface definitions provided by the KAPSE shall
encompass

(i) the primitive operations that the KAPSE makes available
to APSE tools; these include any operations that may be

V*) necessary to supplement the facilities of package
INPUTOUPUT ... in order to allow an APSE tool access to
all the functional capabilities of the database,

(ii) the abstract data types (type declarations plus
operations) that are required to interface the various
stages of compilation; these include the data types that
are produced by a compilation stage for later use by
analysis, testing, or debugging tools."

This implies that the process of generating a support

environment (whether at the level of a MAPSE or an APSE, but

definitely above the level of a KAPSE) is to possess a "standard"

library of KAPSE facilities which exists a-s a collection of

package specifications and bodies which are used during the

compilation of the tools. These tools are then added to the

library and new tools, added subsequently, build on this

foundation until the "whole" is tied together through some

4' C.command-language or access-system.

This will require that the KAPSE facilities exist in a form

which is accessible to the compilation system (which of course

resides at the level of tools) as a library. However, since the
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q facilities have to interact with the hardware system and may be

distinctly implementation dependent, it is possible that the

*facility bodies will not be implementable in Ada itself! Thus it

will not be possible to simply validate the facilities as Ada

Sprograms primarily; they will only be subject to functional

validation. To accomplish both the accessibility of the

facilities to the compilers, the tools and the validating
i

processors, it will be necessary to establish "internal

standards" for the representation of the bodies and their

-" r interfaces with their own specifications. Interfaces between the

specifications and the tools which use the KAPSE facilities must

conform with the other standards for the Ada language level of

interaction. That is, whatever the compiler generates (or is

required to generate, depending on which is implemented first) to

I facilitate the interaction between USE statements and library

packages will also be applied to the non-Ada-generated facility

bodies. Such standards could well be defined for each

implementation but it would be advantageous to specify such

interfaces at some common language-level such as through the

intermediate-language Diana, or at the very least, through a PDL

implemented as the specification part of KAPSE packages.

One of the drawbacks to the current definition of the Ada

. 'language is the inability to place assertive statements which

depend on values associated with parameters in package

specifications. There is a modicum of this ability in the

inclusion of constraints in type declarations and an inkling of

this ability appears in discri-minants in record specifications.

• - ' , : -. .'L .:","''',; .' /o' . " , '' ? 7: € "
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An extension of this ability to include assertive statements

connecting the input and output parameters of procedures and

functions would provide an on-line validation facility which

would greatly enhance the verification of conformance in KAPSE

specifications.

J" THE USE OF LIBRARIES AND THE USE FEATURE

The concept of implementing a KAPSE as a library of packages
gives rise to a facilities validation-procedure which is the

initial test-suite in a process which ultimately encompasses the

Minimal APSE set (MAPSE). That is, the specifications of the

facilities (which actually prescribe the interfaces with the

tools) should be defined in a standard KAPSE document in the

programming language Ada, and the functionality of the facilities

ican be specified in a PDL. However, it will not be possible to

require that the specifications be validated in a character-by-

character comparison since:

(1) there should be no requirement that the authors of a
KAPSE maintain the same naming-conventions for
declarations except to maintain a homomorphic
relationship between entities, and

(2) the authors may need to add private parts to the
specification in order to accomodate other unique

I procedures (functions and packages) which are not a part
of the required facilities set.

On the other hand, validation of the interfaces between a tool

and the facility should be capable of being conducted as an

integral part of the validation of the facility itself,

particularly if the facility is designed (specified) to be

responsive to changes in individual parameters and these

,"'
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responses can be readily ascertained. Thus a facility should be

specified in conjunction with a test tool which would exercise

its capabilities. Such a validation tool should be a part of the

*1 KAPSE description, and be a valid Ada program which can be simply

' compiled and executed as a stand-alone test of the facility.

Overall testing and validation which would validate the

interactions between facilities and the interdependence of

facilities would be separate*.

COMMUNICATABILITY VERSUS PORTABILITY

The validation of tools requires that tools be regarded as

separate, individually defined entities, each with its own

specifications document. For example, the compiler is a tool

Uwhich has its own Language Reference Manual and its own

validation suite. By comparison therefore, it will be necessary

to write specifications for the editor, debugger, etc. and each

specification will have to include the necessary conformance

statements by which a validation suite can be constructed and be

.judged relative to those conformance statements.

,It would appear, from the Stoneman requirements [2), that it is

necessary that tools be written in the Ada language (see sections

"2.B.10 re transportability; 2.B.11 which can be interpreted as

* If facilities are defined as independent complete entities,
then the intricate interdependence of facilities can be
minimized. If one the other hand the implementer desires to
"extricate" common features of facilities, this interaction would
not be apparent to a tool and thus not subject to validation.
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saying that it refers to tools including those written in Ada,

and 4.E.3 which asks that tools be "written in Ada") but it is

not a requirement of current contracts that the fundamental tool,

the compiler, is written in Ada. The only requirement should be

that the tools have interfaces (with the KAPSE) which are

F"standardized". Thus tools act and perform in the same manner as

.- Ada programs but are not required to be Ada conforming programs

in their source form.

By the model which has been proposed here, tools may communicate

with other tools only through the. KAPSE; this can be accomplished

best through the provision of a "pass-through" facility in the

KAPSE. However, indirect communication is possible through the

data-base facility (see Stoneman sectien 2.B.4). This ability to

communicate also provides an alternative to portability in an

open systems environment. That is, while the "Stoneman"

requirements [21 specify the portability of tools (2.B.11), this

can only be achieved at the source-code level between differing

architectures; however, the ability, to communicate with tools

which exist at other nodes of a network will effectively re:olve

this problem for non-Ada tools. This concept of tools which are

implementation-restricted, because of their non-use of Ada, can

be characterized by distinguishing between Stoneman-conforming

tools which are Ada written and transportable, and APSE-

conforming tools which are non-portable but accessible through a

communications system. That is, portability can be replaced by

communicatability.
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[s\ KAPSE IMPLEMENTATION STRATEGIES -- EFFECT ON VALIDATION

Although programs in the Ada language may be portable, tools

that are written using operating system facilities not directly

'included in the language would be portable only if those

facilities are identically implemented on each machine. In an

A' APSE, KAPSE-facility-specifications provide the interface between

the underlying operating system and the support-environment

tools. To gain the highest degree of portability of APSE tools,

of Ada programs, and of APSE databases, the Department of Defense

has promulgated as a distinct goal the evolution of a single

• KAPSE-interface [9]. Despite this goal, two distinct KAPSE

4- -interfaces exist as part of APSE development efforts. The KAPSE

of the Army-supported Ada Language System (ALS) and of the Air-

Force-supported Ada Integrated Environment (AIE) both have

elements in common, but are not compatible for the purposes of

transportability.

Lyons [10] details seven likely paths of KAPSE evolution, given

that different KAPSE-interfaces currently exist and that some

I." °) degree of transportability will continue to be needed as

evidenced by the memorandum of agreement [9].Two of the most

likely alternatives, the standardization of more than one

existing KAPSE and the design and standardization of an entirely

new KAPSE-interface, are interesting when examined from the point

* *of view of validation for transportability. Both alternatives

have drawbacks and advantages over the other, but from the

pragmatic level, satisfying the memorandum of agreement will

require the design and standardization of a machine-independent

---
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set of KAPSE facilities. These two alternatives are discussed

below from the perspective of validating for transportability. A

third alternative, a mixed approach, is also discussed as a

practical implementation strategy that allows for

transportability.

.. 4 S_ N-Standard KAPSES's

Momentum is already well-established along the path toward N-

standard KAPSE-interfaces. The evolution of a small number,

presumably one for each Armed Service, of accepted KAPSE's

characterizes this path. Each of the KAPSE's is likely to

undergo a de facto standardization process as multiple

implementations are developed. To assure portability of tools

within one of the standard KAPSE's, i.e. across implementations

of the same KAPSE, the development of a validation suite for

OA KAPSE services would be required. In light of the two currently-

existing and distinct KAPSE's, the next step in this path will be

the proliferation of these systems by multiple KAPSE-

implementations. This is certainly anticipated for both the ALS

and AlE through rehosting of their KAPSE facilities.

Supposing that a standard for each of the KAPSE's did evolve,

FI validating the transportability of tools across implementations

could proceed in one of two ways. The first approach parallels

the big-bang approach to testing by submitting the entire set of

-, rehosted KAPSE-facilities to an extensive validation-suite.

Doing so would ascertain that any tool developed on the rehosted

KAPSE could be transported to another APSE, and that any tool
4'-.

'.'
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developed on another validated implementation of the KAPSE could

be transported to the rehosted APSE. This gives the appearance

that one validation effort for all the facilities provided by the

KAPSE would assure the transportability of tools, but in reality

such would not be the case. In almost every instance of a tool

to be transported, there is another form of interface that must

be validated in the new environment. Very few tools do not

themselves communicate to other tools either directly through

KAPSE facilities or through commonly-accessible data bases. For
1% 'example, consider a text editor that is to be transported from

one APSE to another. As mentioned above, intertool dependencies

a" (or protocols) must be validated whenever tools that depend upon

or use other tools are transported in isolation. Aside from a

direct interface with KAPSE services through procedure calls, the

U editor has indirect interfaces, or protocols, with other tools

accessing a text file created by the editor. It may be the case

that the APSE's compiler expects that Ada source-files to be in a

special format somewhat different than other text files.

Although the big-bang approach allows the functionality of all

KAPSE services to be tested at once, there exists a need to

validate the interaction that transported tools have with other

tools.

The second approach is essentially divide-and-conquer. Each

time that a tool is to be transported to a system, the specific

' '~facilities used by the tool and the intertool dependencies are

validated. In most cases it would not be necessary to validate

the entire KAPSE to transport a single tool; instead, validation
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of only those facilities used by the tool would be required.
Although a particular implementation's KAPSE-facilities may be

validated several times, the advantage of divide-and-conquer is

that test cases originally used to validate the functionality of

-. J the tool augment the validation of the specific KAPSE facilities.

In general, portability of tools across different

*. implementations of one of the N-standard KAPSES poses no more

problems to validation than there exists with just one standard

, KAPSE. Although validating the functionality of the KAPSE

facilities is relatively straightforward through validation

suites, there is certainly the additional overhead of

standardizing N-different KAPSE's and developing and maintaining

N validation-suites. The most damaging drawback, however, is

that nothing can be done to provide for the portability of tools

from one of the standard KAPSE's to another. Returning to the

concept of one standard KAPSE for each Armed Service and

realizing that several contractors may work for more than one

Armed Service, they would be required to maintain and use

different, possibly radically-different, Ada-environments.

' ~ Additionally, many programs are identified with more than one

*. Armed Service and the software produced on these programs must

integrate into each involved Armed Service. To elucidate the

options available for validating transportability across standard

KAPSE's, suppose that a tool or group of tools are to be

transported from one APSE, with KAPSE-A, to another with a

different KAPSE, say KAPSE-B. Since it is very likely that the

underlying KAPSE-facilities being used are radically different,
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one must either simulate the original KAPSE or alter the tool to

achieve mobility.

Simulation of KAPSE-A facilities using those provided by KAPSE-B

would provide a relatively-simple transporting mechanism that

-'". -" would not require tool modification. The subset of KAPSE-A

facilities that are used by the tool could be implemented using

*" b either the facilities of KAPSE-B or the host-level operating

system. Once. the KAPSE-A facilities had been simulated they

could be validated using the relevant portion of the suite for

KAPSE-A. This is, however, a rather naive view of the

requirements for moving tools from one standard KAPSE to another.

In the most common situation, major sections of the target KAPSE.

(KAPSE-A in the above example) would have to be simulated for

even the simplest of tools. For example, suppose that the tool

to be moved performed file manipulation. Because of the strong

S,- dependence of one file-control primitive upon others, all file-
control services would have to be simulated. This strong

. ,dependence filters up to the tool level as well. It is likely

that a single isolated tool could not be transported from one

APSE to another unless that tool did not interact with any other

tool on the system. A more obvious drawback of this approach is

. that it is generally quite inefficient to simulate one operating

system's primitives in terms of those of another. It appears

that the technique of simulation c! one set of KAPSE facilities

in terms of another set is reasonable only for transporting very

simple tools without strict performance-constraints, and the

. technique can take little advantage of validation efforts already

.-'' - , ",;..C ,V ',-,.,. " ..- ." ',- .,"-'-,...-. ; ,.. .---.- ;.: ; i..'.'-' , ".... ' '
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expended on the involved kernels.

The other approach that can be used to move tools from one

standard KAPSE to another is to alter the tool itself to

accommodate the new set of KAPSE facilities. Unfortunately, the

only way that validation can aid in the process is when a set of

test cases has been established to validate the functionality of

the tool. Such a set of test cases can be used, with minor

modifications, to test the new version of the tool. A distinct

disadvantage to changing the tool to transport it is that the

effort required to effect the move is highly variable and

*dependent upon the original design and implementation of the

tool. Tools whose KAPSE service-calls are few in number and

isolated to a specific section of code have an obvious advantage.

Even though well-written tools, independent of all else, are

Ueasier to transport, leaving such a large portion of the burden

for transportability in the hands of the tool implementor is not

advisable.

If the current momentum is not altered, more than one de facto

standard KAPSE may evolve. In this event, the relationship

between the Ada language and its supporting set of operating

system facilities would be little changed from the current

relationship between high-level languages and already existing

operating systems. A major software-engineering advancement of

the Ada Program will be significantly diluted, and only pure Ada

language programs will be transportable. This problem has been

addressed in a KITIA position paper (i11 in which the problems

arising from the current Department of Defense efforts are

I
U
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identified and recommendations are made for a logistically-sound

path leading toward a resolution. Although they do not analyze

how multiple standard KAPSE's-affect the cost of

transportability, their paper certainly supports our thesis that

validating the KAPSE services to assure transportability can be

practically applied only to moving tools between different

implementations of the same KAPSE.

A Single Standard KAPSE

KAPSE validation for transportability between different

implementations of the same KAPSE is no different for the

scenario of N-standard KAPSES than it is for a single KAPSE.

Approaches to this validation are now discussed in the context of

a single standardized set of KAPSE facilities. Several

alternative paths may eventually lead to a single KAPSE-

interface. One of the two existing KAPSE's could be selected to

be the standard, or parts from each could be selected. From the

point of view of pure transportability, the desired route would

be to design an entirely-new set of KAPSE facilities based on the

*Stoneman requirement [2), experience from the ALS and AIE

implementations, and forseeable tool-requirements. Such a design

could be performed with ease of validation, machine independence,

-A~. and rehostability on various architectures as primary design-

criteria.

As mentioned above, two different strategies could. be used to

validate that tools written using KAPSE facilities could be

transported. Using the big-bang approach, a suite to test the
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functionality of all routines making up the KAPSE interface can

be developed and used to test new implementations for compliance

to the standard. This form of test is presumably large and quite

time-consuming to use. The advantage, however, is that early in

the re-implementation of a KAPSE several of the subtle errors are

encountered and corrected alleviating possible data or program

errors that might otherwise be promulgated through the

environment's tools. The test suite itself could take the form

of an Ada tool using KAPSE services. Thus, KAPSE facilities

defined through Ada package specifications along with their

S machine-dependent implementation in the form of package bodies

* r.could be tested by executing the validation tools. The other

""F' approach, divide-and-conquer, validates all that is necessary

when transporting. Each time that a tool or group of related

tools are to be transported, four different levels of validation

- must take place. The functionality of the rehosted KAPSE-

facilities must be validated, each tool must be checked to assure

. that it uses only standard KAPSE facilities, and shared protocols

with different tools must be validated.

(1) Validating the necessary KAPSE-facilities. All KAPSE

facilities used by the tool to be transported must be considered.

If we assume that a validation suite exists to test the

functionality and interactions among KAPSE facilities, that suite

would be employed to validate the facilities used by a tool in

kthe new environment. Certainly it is not necessary to revalidate

facilities that have already been shown to conform. But, it is

necessary to establish that the facilities' used by the tool in

I
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its home environment have the same meaning as those in the new

environment. To do so it may also be necessary to establish the

conformance of the facilities in the home environment of the

tool. Additionally, if a tool uses only a small number of a set

of highly-related facilities then it may be necessary to validate
* the entire set as they exist in the new environment. An example

of this is the set of KAPSE facilities that manipulates the

intermediate form of an Ada compilation-unit. Included in the

set are routines to build the intermediate form as well as those

needed to access an already-existing intermediate structure. If

a tool that is to be transported uses only those facilities for

building the form it may be necessary to validate the conformance

of the entire set of facilities.

(2) Tool use of KAPSE-facilities. It may also be necessary to

assure that a tool uses only standard KAPSE facilities. Non-

standard facilities may be hidden within the tool in various

forms. One such form might be that a certain KAPSE routine has

an additional parameter that is implementation-specific.

Although non-standard usage such as additional parameters or new

routine-names may be easily detected with static checks, a more

difficult deviation would be the use of a non-standard argument

to a standard parameter. The use of enumerated types for values

of parameters to standard KAPSE facilities would ease this

problem, but since some procedures have parameter values for

which type-enumeration would not be possible, the problem would

still exist.

(3) Tool to tool interactions (protocols). APSE tools that do

I
U
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) rnot communicate with other tools either directly or through

common data-bases are rare. We call such communication an

intertool-protocol, and consider it an important part of tool

transportability. If a tool that communicates with other tools

is moved in isolation, i.e., without moving the related tools,

then the tool validation must include tests examining the tools

communication in its new environment. Tools such as compilers,

linkers, and debuggers are so highly interrelated that

transportation of only a single tool of the group would not be

practical. This is one instance where the protocol between the

tools is so complex that the effort required to transport a

single tool would exceed the advantage gained. Tools such as a

general text-editor, however, have a protocol with other tools

simple enough to allow for isolated transportation of the tool.

i In terms of the Open System's model of an APSE presented above,

the validation of the KAPSE facilities and the tools use of those

facilities is nothing more than a validation that all levels

below the application are the same, at least as seen by the tool,

in the old and new environments. Validation of a protocol as

described above, checks at the same level as the tool to assure

* that interactions at that level are the same in the new

environment as in the old. Vrom the standpoint of the cost

required to validate for transportability, the alternative KAPSE

evolution leading to one standard KAPSE should be independent of

the means used to arrive at a 'single KAPSE. If the criteria

include, however, hostability on various architectures, the most

appropriate path to a standard KAPSE is a new design based on

I.
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Salready-existing systems and the needs of validation for

transportability.

A Mixed Implementation Strategy

A final implementation-strategy deviates slightly from those

above by allowing the KAPSE supporting an individual APSE to

contain both standard and nonstandard features. Although the

' %!mixed approach is not optimal from the standpoint of

transportability, it does provide an alternative in which

transportability can be achieved, and permits flexibility within

each installation. The approach centers around a m*nimal set of

functionally-complete KAPSE-services which are machine-

independent. As a standardized set of facilities they would be

implemented and validated on each installation of an APSE, and

tools would be written based upon these facilities. The term

"minimal" is used to describe the KAPSE to indicate that a truly

machine-independent set of facilities may not be efficiently

implementable on all systems upon which the KAPSE is to be

hosted. Consequently, the mixed approach would attempt to.define

the smallest group of services necessary to implement APSE tools.

The standard set might not allow tools to be developed requiring

specialized facilities, but through controlled mutation,

installations could enhance or extend the services for the

purposes of efficiency or added capability. Such enhancements or

extensions would have to be controlled not by the criterion of

functionality, but rather by the criterion of how they are

implemented. A concern in the use of nonstandard facilities in

U.
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the implementation of tools is that transportability is affected;

but, by controlling the enhancements so that their use may be

detected automatically by an analysis of the tool, the cost of

transportability of a tool could at least be determined, if not

minimized. An installation's enhancements to the set of KAPSE

*facilities, in the form of new routines, would be relatively easy

to discover. By automatically generating a list of all services

used by a tool, either directly or indirectly, and by comparing

*, .the list with the standard KAPSE-specifications, the set of

nonstandard facilities could be isolated to specific sections of

program text. On the other hand, however, the use of nonstandard

facilities can be more difficult to detect. An example might be

a tool that provides a runtime-generated nonstandard-argument to

an acceptable KAPSE-service. Simple analysis of the procedure-

names invokable by a tool would not reveal this type Of

extension, and detection would instead require a runtime monitor

of KAPSE services. A further question is how the implementation

of the extensions relates to the implementation of the standard

KAPSE-facilities. Certainly the meaning of a standard facility

could not be changed by an extension, although an extension could

require that a standard service perform actions in addition to

those standardized. For example, if a service called

CREATEPROCESS were part of the standardized set then it may be

that an extension would require CREATEPROCESS to store

information about the process that augments what is required by

the standard. The additional information may later be used by a

nonstandard feature.

I
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.The mixed approach would only be applicable in the case that a

standardized set of efficiently-implementable services cannot be

designed as the KAPSE. Such an approach admits that

tg,. transportability can be achieved only by sacrificing flexibility

and/or efficiency. The advantage to this approach is that each

tool may be designed and implemented according to its intended

use. If the tool is to be usable on several different APSE's

then it would be implemented in terms of the standard facilities

only. If the tool were to resident only on one APSE then it

could be implemented taking full advantage of underlying host-

Specularities.

Of the alternative implementation-strategies that have been

presented in this section, the evolution of a single set of

- standardized KAPSE-facilities, to which strict adherence is

required, was the most desirable from the criteria of cost of

I ~ validation and transportability. Currently however, not enough

is known about the specific architecture of a machine-independent

set of facilities to determine whether a single standard-KAPSE

. can evolve. The important question is whether a single set of

services can be defined that are economically implementable on

various existing systems and that are computationally efficient

in terms of time and space requirements. If such a set can

indeed be defined then the most desirable alternative is a single

standard KAPSE whose facilities and overlying tools are validated

using either the big-bang or divide-and-conquer approach. In theHevent that a reasonable KAPSE cannot be defined then careful

attention and further work should be devoted to the mixed

.
I
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I , approach. Questions that need to be addressed should this

alternative be adopted include: What liberty can be taken in

developing extensions and enhancements to the standard KAPSE? To

what extent, if any, can the meanings of standard facilities be

augmented? Is there a specific syntax that should be used in

enhancements? What facilities should be included in the minimal

standard KAPSE? Should those facilities only be sufficient to

.' ',implement the MAPSE level or should they also support projected

APSE tools? Without careful guidance the mixed approach could

easily lead to the current situation in which vastly-different

APSE structures are supported.

H
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CONCLUSIONS AND RECOMMENDATIONS

AN APSE REFERENCE MODEL

This report has raised the issue of the need for a more
substantial and extensible model for the definition of APSE@ that
was presented in the Stoneman requirements (2]. The model
presented by Buxton was intended as being merely illustrative and
limited in scope to that report and not intended to be followed
closely in constructing or implementing actual support-
environments. It is the recommended that the Open Systems
Interconnection Model be accepted as the underlying model of
APSEs and that implementations be required to clearly delineate
the layers and restrict modules in which they are specified to
reside.

Extensions to include Networking Environments
It is clear to us that the Ada systems are likely to exist in

environments which are more extensive than considered in previous
reports. That is, the Ada systems, due to their reliance on
multi-processing environments and cross-system development will
be installed in networks Which will require a more detailed

*A consideration of inter-system communications than has been
previously presented. Such environments will need to be
developed specifically for the Ada systems and should be
implemented sd as to permit their clarity of interconnection with
Ada Programming Support Environments and, by implication, with
Ada run-time environments. It is recommended that there be
developed a "Strawman" to extend Ada systems into a networking
environment, based on the OSI Reference Model.

The Need for Security Considerations
It is clear that Ada environments will be required to contain

security elements which will provide both access security and
"physical" security. Considering the OSI model, a security6sublayer could be introduced into the presentation layer which
would insulate the Ada programs or the APSE tools from the KAPSE
layer. Other elements may need to be added at lower layers to
provide security between the software and hardware systems. By
insisting that the only means of access to a system is through an
application layer, full security can be ensured. It is
recommended that the security aspects of the design of APSEs be
investigated and that the results o this study be incorporated
into the Stoneman requirements.

THE NEED FOR A SINGLE KAPSE DEFINITION

In view of their potential for violating the general Ada program
requirements for consistency and portability implied by Steelman
and Stoneman requirements, the continued development of separate
KAPSEs by the Dept. of the Army and the Air Force, it is
recommended that there shall be ony one KAPSE definition and

Il
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that by FY86 all interim KAPSEs be required to conform to this
single model.

Defining a Standard KAPSE Completely
Following if the decision regarding the use of a single KAPSE

model is followed it is recommended that work be initiated to
define such a KAPSE in a form which would permit conforming
implementations and ensure the adequacy of a validation
procedure.

THE NEED TO DEFINE CONFORMANCE AND VALIDATION WITHIN APSE
SPECIFICATIONS

The need to develop procedures and test suites to validate APSEs
*itself requires that some guidance be given to those responsible

for the administration of those procedures. It is recommended
that guidelines be established to ensure that the specifications
for APSEs be accompanied !y statements which specify the
requirements for conformance and the conditions to be met to
satisfy the validation requirements.

hCONTINUED DEVELOPMENT OF FORMAL DEFINITION TECHNIQUES FOR ADA
Work is already under way, supported by AJPO, to develop a

formal definition of the programming-lanuage Ada; it is
recommended that this work be extended to consider the use of a
semantic-description method in connection with APSEs and
specifically for the definition of conformance and validation
requirements.

I
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